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Abstract. The Green’s function of the relativistic Aharonov–Bohm–Coulomb system is given by
the Feynman–Kac formula. The earlier treatment is based on the multiple-valued transformation
of Levi-Civitá. The method used in this contribution involves only the explicit form of a simple
Green’s function and an explicit path integral is avoided.

1. Introduction

In recent years, the Aharonov–Bohm (AB) effect [1] has been of much interest in the context of
anyonic theories [2]. Since an anyon is a two-dimensional object that carries the magnetic flux,
the dominant interaction between anyons is the AB interaction. An anyon–charge interaction
naturally requires the Coulomb modification. The present paper deals with the relativistic
Aharonov–Bohm–Coulomb (ABC) system and its aim is to derive the Green’s function by
making use of the Feynman–Kac formula. So clear and neat is the method that it provides us
not only with an alternative approach but a completely diverse viewpoint for treating physical
problems. The ABC case can serves as a prototype for the treatment of Besselian-type problems
[3] via the Feynman–Kac formula.

2. Green’s function of the ABC system

The starting point is the path-integral representation for the Green’s function of a relativistic
particle in external electromagnetic fields [4, 5]:

G(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS
∫
Dρ(λ)8[ρ(λ)]

∫
DDx e−AE [x,ẋ]/h̄. (2.1)

The action integral

AE [x, ẋ] =
∫ λb

λa

dλ

[
m

2ρ(λ)
ẋ2(λ)− i

e

c
A(x) · ẋ(λ)− ρ(λ)(E − V (x))

2

2mc2
+ ρ(λ)

mc2

2

]
(2.2)

whereS is defined by

S =
∫ λb

λa

dλ ρ(λ) (2.3)
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in which ρ(λ) is an arbitrary dimensionless fluctuating scale variable, and8[ρ(λ)] is some
convenient gauge-fixing functional, such as8[ρ] = δ[ρ − 1], to fix the value ofρ(λ) to unity
[5, 6]. h̄/mc is the well known Compton wavelength of a particle of massm,A(x) andV (x)
denote the vector and scalar potential of the systems, respectively.E is the system energy and
x is the spatial part of the (D + 1) vectorx = (x, τ ).

The functional integral forx in the representation (2.1) can be interpreted as the expectation
value of the real functional exp{−(1/h̄) ∫ λb

λa
dλ βρ(λ)V (x(λ))} over the measure

K0(xb,xa; λb − λa) =
∫
DDx(λ)

× exp

{
−1

h̄

∫ λb

λa

dλ

[
m

2ρ(λ)
ẋ2(λ)− i

e

c
A(x) · ẋ(λ)− ρ(λ)V (x)

2

2mc2

]}
(2.4)

and the entire Green’s function reduces to the following formula:

G(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS
∫
Dρ(λ)8[ρ(λ)]

× exp

{
−1

h̄

∫ λb

λa

dλ ρ(λ) E
}〈

exp

{
−1

h̄

∫ λb

λa

dλ βρ(λ)V (x(λ))

}〉
(2.5)

in whichE = (m2c4−E2)/2mc2, β = E/mc2 with the notation〈?〉 denoting the expectation
value of the moment? over the measureK0(xb,xa; λb − λa). Equation (2.5) forms the basis
for studying the relativistic potential problems by the Feynman–Kac-type formula.

Expanding the potentialV (x) in equation (2.5) into a power series and interchanging the
order of integration and summation, we have

G(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS
∫
Dρ 8[ρ] exp

{
−1

h̄

∫ λb

λa

dλ ρ(λ)E
}

×
∞∑
n=0

(−β/h̄)
n!

n〈(∫ λb

λa

dλ ρ(λ) V (x(λ))

)n〉
. (2.6)

Orderingλ asλ1 < λ2 < · · · < λn < λb and denotingx(λi) = xi , the perturbation series in
equation (2.6) explicitly turns into [7]

∞∑
n=0

(−β/h̄)
n!

n〈(∫ λb

λa

dλ ρ(λ)V (x(λ))

)n〉

= K0(xb,xa; λb − λa) +
∞∑
n=1

(
−β
h̄

)n ∫ λb

λa

dλn

∫ λn

λa

dλn−1 · · ·
∫ λ2

λa

dλ1

×
∫ [ n∏

j=0

K0(xj+1,xj ; λj+1− λj )
] n∏
i=1

ρiV (xi ) dxi (2.7)

whereλ0 = λa, λn+1 = λb,xn+1 = xb andx0 = xa. In the case of the ABC potential system
in two dimensions, we have

A(x) = 2g
−x2ê1 + x1ê2

x2
1 + x2

2

V (r) = −e
2

r
(2.8)
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where ê1,2 stands for the unit vector along thex, y axes, respectively. The perturbation
expansion in equation (2.7) becomes
∞∑
n=1

(−β/h̄)
n!

n〈(∫ λb

λa

dλ ρ(λ) V (x(λ))

)n〉

= K0(xb,xa; λb − λa) +
∞∑
n=1

(
βe2

h̄

)n ∫ λb

λa

dλn

∫ λn

λa

dλn−1 · · ·
∫ λ2

λa

dλ1

×
∫ [ n∏

j=0

K0(xj+1,xj ; λj+1− λj )
] n∏
i=1

ρi
dxi
ri

(2.9)

with

K0(xb,xa; λb − λa) =
∫
D2x exp

{
−1

h̄

∫ λb

λa

dλ

×
[

m

2ρ(λ)
x′2(λ)− i

e

c
A(x) · ẋ(λ)− ρ(λ) h̄

2

2m

α2

r2

]}
(2.10)

whereα = e2/h̄c is the fine structure constant. We now choose8[ρ] = δ[ρ − 1] to fix the
value ofρ(λ) to unity. The Green’s function in equation (2.7) becomes

G(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS e−(E/h̄)S
{
K0(xb,xa; S)

+
∞∑
n=1

(
βe2

h̄

)n ∫ λb

λa

dλn

∫ λn

λa

dλn−1 · · ·
∫ λ2

λa

dλ1

×
∫ [ n∏

j=0

K0(xj+1,xj ; λj+1− λj )
] n∏
i=1

dxi
ri

}
. (2.11)

We observe that the integration overS is a Laplace transformation. Because of the convolution
property of the Laplace transformation, we obtain

G(xb,xa;E) = ih̄

2mc

{
G0(xb,xa; E) +

∞∑
n=1

(
βe2

h̄

)n ∫ [ n∏
j=0

G0(xj+1,xj ; E)
] n∏
i=1

dxi
ri

}
.

(2.12)

To go further, let us analyse the influence of the AB effect. Introducing the azimuthal angle
around the AB tube

ϕ(x) = arctan(x2/x1) (2.13)

the components of the vector potential can be expressed as

Ai = 2g∂iϕ(x). (2.14)

The associated magnetic field lines are confined to an infinitely thin tube along thez-axis:

B3 = 2gε3ij ∂i∂jϕ(x) = 4πgδ(x⊥) (2.15)

wherex⊥ stands for the transverse vectorx⊥ = (x1, x2). Note that the derivatives in front of
ϕ(x) commute everywhere, except at the origin where Stokes’ theorem yields∫

d2x
(
∂1∂2 − ∂2∂1

)
ϕ(x) =

∮
dϕ = 2π. (2.16)
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The magnetic flux through the tube is defined by the integral

� =
∫

d2x B3. (2.17)

This shows that the coupling constantg is related to the magnetic flux by

g = �

4π
. (2.18)

InsertingAi = 2g∂iϕ(x) into the action of equation (2.10), the magnetic interaction takes the
form

Amag= −h̄β0

∫ S

0
dλ ϕ̇(λ) (2.19)

whereϕ(λ) = ϕ(x(λ)), ϕ̇ = dϕ/dλ andβ0 is the dimensionless number

β0 = −2eg

h̄c
. (2.20)

The minus sign is a matter of convention. Since the particle orbits are present at all times, their
worldlines in spacetime can be considered as being closed at infinity, and the integral

n = 1

2π

∫ S

0
dλ ϕ̇(λ) (2.21)

is the topological invariant with integer values of the winding numbern. The magnetic
interaction is therefore purely topological, its value being

Amag= −h̄β02nπ. (2.22)

Added to the action of equation (2.10) in the radial decomposition of the relativistic path
integral [3, 6, 8] and expressing the sum over the azimuthal quantum number by Poisson’s
summation formula (e.g. [8])

∞∑
k=−∞

f (k) =
∫ ∞
−∞

dy
∞∑

n=−∞
e2πnyif (y) (2.23)

we obtain

G0(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS e−SE/h̄
∫ ∞
−∞

dz gz(rb, ra; S)

×
∞∑

n=−∞

1

2π
exp

[
i(z− β0)(ϕb + 2nπ − ϕa)

]
(2.24)

where the pseudopropagatorgz(rb, ra; S) reads

gz(rb, ra; S) = m

h̄

1

S
e−m(r

2
b+r2

a )/2h̄SI√z2−α2

(
Mrbra

h̄S

)
. (2.25)

The sum over alln in equation (2.24) forcesz to be equal toβ0 modulo an arbitrary integral
number. The result is

G0(xb,xa;E) = ih̄

2mc

∫ ∞
0

dS e−SE/h̄K0(xb,xa; S) (2.26)
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in whichK(xb,xa; S) is given by

K0(xb,xa; S) =
∞∑

k=−∞
gk+β0(rb, ra; S)

1

2π
eik(ϕb−ϕa). (2.27)

With the help of the representation, we can perform the angular decomposition of
equation (2.12). Integrating over the intermediate angular part, we arrive at

G(xb,xa;E) = ih̄

2mc

∞∑
k=−∞

Gk(rb, ra; E) 1

2π
eik(ϕb−ϕa). (2.28)

The pure radial amplitudeGk(rb, ra; E) has the form

Gk(rb, ra; E) = m

h̄

∞∑
n=0

(
mβe2

h̄2

)n
g
(n)
k+β0

(rb, ra; E) (2.29)

with g(n)k+β0
given by

g
(n)
k+β0

(rb, ra; E) =
∫ ∞

0
· · ·
∫ ∞

0

[ n∏
j=0

g
(0)
k+β0

(rj+1, rj ; E)
] n∏
i=1

dri . (2.30)

To obtain the explicit result ofg(n)k+β0
, we note that [9]∫ ∞

0

dS

S
e−(E/h̄)Se−m(r

2
b+r2

a )/2h̄SI√|k+β0|2−α2

(
m

h̄

rbra

S

)
= 2

∫ ∞
0

dz
1

sinhz
e−κ(rb+ra) cothzI

2
√
|k+β0|2−α2

(
2κ
√
rbra

sinhz

)
(2.31)

with κ = √m2c4 − E2/h̄c. we have, by using the formula (e.g. [8])∫ ∞
0

dr re−r
2/aIν(ςr) Iν(ξr) = 1

2aea(ξ
2+ς2)/4Iν

(
1
2aξς

)
(2.32)

the result

g
(1)
k+β0

(rb, ra; E) =
∫ ∞

0
g
(0)
k+β0

(rb, r; E) g(0)k+β0
(r, ra; E) dr

= 22

κ

∫ ∞
0
zh(z) dz (2.33)

where the functionh(z) is defined as

h(z) = 1

sinhz
e−κ(rb+ra) cothzI

2
√
|k+β0|2−α2

(
2κ
√
rbra

sinhz

)
. (2.34)

The expression forg(n)k+β0
(rb, ra; E) can be obtained by induction with respect ton, and is given

by

g
(n)
k+β0

(rb, ra; E) = 2n+1

n!

1

κn

∫ ∞
0
znh(z) dz. (2.35)

Inserting the expression in equation (2.29), we obtain

Gk(rb, ra; E) = 2m

h̄

∫ ∞
0

dz exp

{(
2mβe2

h̄2κ

)
z

}
1

sinhz
e−κ(rb+ra) cothzI

2
√
|k+β0|2−α2

(
2κ
√
rbra

sinhz

)
.

(2.36)
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Using the formulae (e.g. [8])∫ ∞
0

dy
e2νy

sinhy
exp

[− 1
2 t (ζa + ζb) cothy

]
Iµ

(
t
√
ζbζa

sinhy

)
= 0((1 +µ)/2− ν)

t
√
ζbζa0(µ + 1)

Wν,µ/2(tζb)Mν,µ/2(tζa) (2.37)

with the range of validity

ζb > ζa > 0

Re[(1 +µ)/2− ν] > 0

Re(t) > 0 | argt | < π

whereMµ,ν andWµ,ν are the Whittaker functions, we complete the integration and find the
radial Green’s function forrb > ra in closed form,

Gk(rb, ra;E) = mc√
m2c4 − E2

0
(

1
2 +

√
|k + β0|2 − α2 − Eα/√m2c4 − E2

)
√
rbra 0

(
2
√
|k + β0|2 − α2 + 1

)
×W

Eα/
√
m2c4−E2,

√
|k+β0|2−α2

(
2

h̄c

√
m2c4 − E2rb

)

×M
Eα/
√
m2c4−E2,

√
|k+β0|2−α2

(
2

h̄c

√
m2c4 − E2ra

)
. (2.38)

This exact formula for the radial Green’s function coincides with the earlier result obtained
by one of the authors from the relativistic path integral with multivalued Levi-Civitá
transformations [5]. It is worth noting that if the flux is quantized, i.e. 4πg = 2πh̄c/e×integer,
|k + β0| is an integer and the spectrum is that of the relativistic hydrogen atom. In this case,
there is no AB effect. This complete the discussions of the relativistic ABC system by the
Feynman–Kac formula.

3. Concluding remarks

In the paper, a method for calculating the relativistic Green’s function is given involving
essentially the computation of the expectation value of momentsQn (Q = ∫ λb

λa
dλV (x)) over

the Feynman measure and summing them in accordance with the Feynman–Kac formula. As
an example, the Green’s function of the relativistic ABC system is given by this method. In
contrast to the former treatment in [5], where the same problem must invoke the spacetime
and the multivalued Levi-Civit́a transformations to perform the path integral, the merit of the
method used in this paper is that it involves only the explicit form of some known Green’s
function and an explicit path integral is avoided. We expect that the methodology presented
herein might be applicable to a large number of problems.
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